Inflammatory and degenerative diseases of the eye and translational research approaches		
Module code	mlsMolOcular-01a	
Abbreviated title	MolOcular	
Module components	Lectures, seminars	
When	Semesters 2+3	
Module coordinator/	A. Klettner	
Organisers	Ophthalmology	
0	<u>3rd semester electives</u> : Experimental Trauma Surgery (Regen. Medicine),	
	Dermatology (Epithelial barrier functions), Neurology (Neurosciences), IKMB	
	(Metabolomics), University Cancer Center Schleswig-Holstein [UCCSH]	
	(Molecular Diagnostics), IfE (Cardiovascular epidemiology)	
Lecturers	MolOcular: A. Klettner (Ophthalmology)	
	Electives 3 rd semester:	
	a. Regenerative medicine and tissue engineering: S. Fuchs (Experimental trauma	
	surgery) b. <u>Epithelial barrier functions:</u> J. Harder (Dermatology)	
	c. Clinical, molecular and diagnostic neurosciences : F. Leypoldt (Neurology and	
	Clinical Chemistry), G. Kuhlenbäumer, C. Stürner (Neurology)	
	d. <u>Molecular Diagnostics</u> : S. Lipinski (UCCSH), L. Bastian, C. Baldus, M.	
	Brüggemann, C. Pott (Klinik für Innere Medizin II)	
	e. Cardiovascular epidemiology: W. Lieb (IfE)	
	<u>f. Metabolomics:</u> K. Aden (IKMB)	
Contact hours	Semester 2:	
	Lecture MolOcular 2 CH Seminar MolOcular 1 CH	
	Semester 3:	
	Lecture MolOcular 1 CH Seminar MolOcular 2 CH	
	Semester 3 small elective: Lecture 1 CH Seminar 2 CH	
Workload	Lecture semester 2: 60 h Attendance time 26 h, preparation 14 h, revision 20 h	
	Seminar semester 2: 30 h	
	Attendance time 14 h, preparation 6 h, revision 10 h	
	Lecture semester 3: 30 h	
	Attendance time 14 h, preparation 10 h, revision 6 h	
	Seminar semester 3: 60 h	
	Attendance time 26 h, preparation 20 h, revision 14 h	
	Elective semester 3 lecture: 30 h	
	Attendance time 14 h, preparation 6, revision 10 h Elective semester 3 seminar: 30 h	
Total: 240 h	Attendance time 26 h, preparation 4 h	
Credit points	8 (sem. 2 lecture = 2 CP, sem. 2 seminar = 1 CP, sem. 3 lecture = 1 CP, sem. 3	
	seminar = 2 CP; 3^{rd} -sem. elective lecture + seminar = 1 CP; sem. 3 lecture = 1 CP; sem. 3	
Requirements	-	

	Expected outcome	
		Knowledge: Students
		- are familiar with the role of ocular cells and tissue in physiology and pathology
		of the eye
		 have a general understanding of the immune privilege and the ocular immune defense
		- have a general understanding of pathological mechanisms of selected ocular
S	* 55	diseases
2	19 CO	- have a general understanding of scientific models in ocular research
		- have a general understanding of conceptualization and planning of research
		projects.
	TAL STATE	Skills: Students
	ATT REAL	can identify different cells and tissue and prepare primary cultures from the eye
		- can connect physiological functions and disease processes
		- can critically discuss the benefits and drawbacks of different model systems and
		apply this knowledge to their own research projects.
		Competences: Students
		- are able to generally assess, discuss and apply research models
		- are able to apply theoretical and practical knowledge in ocular research.
3		
G	AW 1	Electives 3rd semester
		a. Regenerative medicine and tissue engineering
		Knowledge: Students
		- are familiar with the principles and potential fields of application of tissue
		engineering and regenerative medicine including the use of adult stem cells,
		biomaterials, bioactive molecules.
		- can define different cellular and molecular mechanisms in tissue repair
		- understand 3-D cultures.
		<u>Skills</u> : Students
		- can define and isolate adult stem cells in cell cultures in the laboratory
		- can handle co-culture models in the laboratory
		 can apply models to study angiogenesis and wound repair
		 can apply methods to evaluate repair mechanisms.
		Competences: Students
		- are able to apply interdisciplinary approaches to support tissue regeneration
		- can develop translational strategies.
		b. Epithelial barrier functions
		Knowledge: Students
		- are familiar with the importance of epithelia as physiological barrier against
		potentially detrimental environmental factors
		- understand the molecular mechanisms of epithelia for protecting the integrity
		of their barrier function.
		Skills: Students can associate disruptions of the epithelial barrier with specific
		disease manifestations.

Expected outcome

AS LONGA

HIL

MolOcular

<u>Competences</u> : Students - can assess the impact of epithelial barr manifestations - are able to understand scientific paper critically with colleagues.	
categories of neurological diseases and	al assessment, clinical syndromes, major diagnostic procedures plecular mechanisms underlying neuro-
translational research	human diseases and develop them into t scientific publications and draw con- liantly.
<u>Competences</u> : Students - are able to select suitable methods to a - are able to communicate with clinical r	ddress specific neuroscientific questions neurologists.
diagnostic methods in medicine, with a - can explain what precision/personali particular diagnostic tools - have a good understand of current im checkpoint inhibitors) - are familiar with the theoretical backg molecular biology	cular biology has on state-of-the-art particular view to cancer zed medicine is and why this requires munotherapy approaches (e.g. immune ground of basic diagnostic approaches in sample processing to treatment
 (e.g. extraction of nucleic acids from biddPCR, exome sequencing) - can apply software (self-programmed resulting from sample processing - can use quality control measures to enserratication in data analysis 	routines including samples preparation blood and tissues, quality check, qPCR, and software packages) to analyse data sure correct sample processing and error entation of sample processing and data
Competences: Students	
	THOM BR

; ; ; ; ; ; ; ; ; ;	 can establish connections between theoretical knowledge in molecular biology and determined tumour samples to arrive at the best suitable diagnostic approaches for individual samples. can use gene data bases for extracting relevant information for a given data set of a processed tumour sample with regard to formulating potential treatment suggestions. are able to transfer case knowledge onto a meta level for further research in precision medicine.
<u> </u> - - - t	e. Cardiovascular epidemiology Knowledge: Students - have a good understanding of essential methods used in cardiovascular epidemiology - are familiar with the clinical manifestation of major cardiovascular diseases and their traditional risk factors - have a good understanding of new, emerging risk factors (e.g. biomarkers) for cardiovascular diseases.
-	<u>Skills</u> : Students - can explain the interrelation of risk factors and disease risks for cardiovascular diseases.
-	Competences: Students - can assess diagnostic and screening markers and evaluate their potential areas of application - can assess different models of risk prediction and judge the additional contribution of new biomarkers beyond established risk factors.
	 f. Metabolomics Knowledge: Students understand the key concepts of metabolomics, metabolism, metabolites, and metabolic networks are familiar with basic principles of metabolomics analytical tools (nuclear magnetic resonance (NMR) spectroscopy and hyphenated mass spectrometry) and workflows in metabolomics research are familiar with basic principles of high-dimensional statistics/machine learning data analysis in metabolomics Skills: Students can prepare samples for NMR spectroscopy can preform basic statistical data analysis with metabolomics data (e.g. hypothesis testing) can write R code for selected analysis tasks Competencies: Students are able to identify metabolites from NMR spectra are aware of advantages/disadvantages of specific metabolomics analytical tools are able to select suitable statistical methods for specific research questions in metabolomics.

Content	MolOcular Lecture: Structure, function and culture of ocular cells and tissues, development, molecular basis of vision, immune privilege, immunology of the eye, animal models, pathomechanisms of selected ocular diseases Seminar: Intensifying the understanding of disease mechanisms, therapeutic development, introduction into lab techniques, tutorial for development of research projects.
	Electives 3rd semester a. Regenerative medicine and tissue engineering Lecture: Definitions of and examples for regenerative medicine and tissue engineering; interdisciplinary approaches in regenerative medicine; adult stem cells; biocompatibility and functionality of implant materials, bioactive molecules, vascularisation as key issue for tissue repair, co-culture models, models for studying angiogenesis, inflammation and tissue repair. Seminar: Discussions of scientific papers on tissue engineering and regenerative medicine with integrated lab experience in experiments using techniques introduced in both lecture and seminar.
	 b. Epithelial barrier functions <u>Lecture</u>: Structure and cellular components of epithelia (skin, intestine and respiratory tract); physical barrier functions; strategies for identification and differentiation of pathogenic micro-organisms and members of the commensal microbiota; extracellular and intracellular effector mechanisms for controlling microbial growth; provision of mediators for activation and recruitment of effector cells. <u>Seminar</u>: Hypotheses and discussion: how can dysregulation of the epithelial barrier lead to epithelial infectious and inflammatory diseases; discussion of scientific papers, presentation of current research results.
	c. Clinical, molecular and diagnostic neurosciences <u>Lecture</u> : Clinical diagnostic techniques, movement/neurodegenerative dis- orders, neuroimmunology, neurovascular diseases, peripheral nervous system, neuroscience of pain, neuroscience of epilepsy.
	Seminar: Presentation of scientific articles by the students followed by critical group discussion.
	 d. Molecular diagnostics <u>Lecture</u>: Somatic cancer mutations and driver genes, concept of personalized medicine, classes of biomarkers, diagnostic tools: qPCR, ddPR, panel diagnostics; data analysis and interpretation: limits of detection, SNP analysis, databases; practicalities in medicine: health insurance coverage and diagnostics, timesensitivity, patient-based science. <u>Lab seminar</u>: Workflow and methods in a diagnostic lab, conducting lab diagnostics
	Computer seminar: Data analysis using bioinformatics and databases e. Cardiovascular epidemiology

		Lecture: Epidemiological methods and study designs; contribution of cohort studies to cardiovascular epidemiology; global burden of cardiovascular disease; traditional and novel risk factors (including genomic and metabolomic markers); assessment of new biomarkers and their performance; concepts of screening and risk prediction; subclinical cardiovascular disease; various forms of clinical manifestations of cardiovascular disease (e.g. stroke, myocardial infarction, heart failure). Seminars: Discussion of scientific papers and important concepts of cardiovascular epidemiology.
		f. Metabolomics <u>Lecture</u> : Overview of metabolomics and its different applications, important aspects of metabolomics study design, introduction to metabolomics analytical tools (NMR spectroscopy and hyphenated mass spectrometry) and metabolite identification, introduction to metabolomics data preprocessing, statistics and bioinformatics data analysis in metabolomics and interpretation of results in biomedical context <u>Analysis seminar</u> : Preparing samples for NMR spectroscopy (practical lab work), metabolite identification from NMR spectra, computer-based analysis of data in R, writing R code for individual data analysis routines.
	Module evaluation/ exam	Graded Oral exam
SI	Media used	PPT presentations, handouts, textbooks, example experiments
LONIT A GA	Literature	MolOcular Forrester et al., The eye – basic science in practice (Saunders) Dartt et al., Immunology, Inflammation and disease of the eye (Academic Press) Review and research articles.
	ALS SU	a Regenerative medicine and tissue engineering
HI Tol	B	 a. Regenerative medicine and tissue engineering von Blitterswijk C, de Boer J, Tissue Engineering (Elsevier 3rd edition, 2022) Current scientific papers
CHI CHI	BR TIS	von Blitterswijk C, de Boer J, Tissue Engineering (Elsevier 3 rd edition, 2022)

	d. Molecular diagnostics
	William Coleman, Gregory Tsongalis: The Molecular Basis of Human Disease
	(Academic Press, 2 nd edition, 2017)
	Gregory Tsongalis: Advances in Molecular Pathology, volume 4-1
	(Elsevier 2021)
	Bailey M et al.: Comprehensive Characterization of Cancer Driver Genes and
	Mutations (Cell, Volume 173, Issue 2, 2018)
	e. Cardiovascular epidemiology
	Rothman K, Epidemiology - An introduction (OUP 2 nd edition, 2012) [still valid]
	Oleckno WA, Epidemiology: Concepts and Methods (Waveland Press Inc. 2008)
	[still valid]
	Current scientific publications
	f. Metabolomics
	Gowda, GA Nagana, and Daniel Raftery, eds. NMR-based Metabolomics:
	Methods and Protocols. Humana Press, 2019.
	Cavanagh, John, et al. Protein NMR spectroscopy: principles and practice.
	Elsevier, 1995.
	Wehrens, Ron, and Reza Salek, eds. Metabolomics: practical guide to design
	and analysis. CRC Press, 2019.
	James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York:
	springer, 2013.
	Review and research articles
L	1